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We study the disorder effect on the transport properties in the HgTe/CdTe semiconductor quantum wells. We
confirm that at a moderate disorder strength, the initially unquantized two-terminal conductance becomes
quantized and the system makes a transition to the topological Anderson insulator �TAI�. Conductances cal-
culated for the stripe and cylinder samples reveal the topological feature of TAI and supports the idea that the
helical edge states may cause the anomalous quantized plateaus. The influence of disorder is studied by
calculating the distributions of local currents. Based on the above-mentioned picture, the phenomena induced
by disorder in the quantum spin-Hall region and TAI region are directly explained. Our study of the local-
current configurations shed further light on the mechanism of the anomalous plateau.
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I. INTRODUCTION

Quantum spin Hall effect �QSHE�, which is proposed as a
class of topological state of matter in two dimensions, has
generated a great deal of interest.1 Contrary to the integer or
the fractional quantum Hall state, which is induced by a
magnetic field that breaks the time-reversal symmetry, QSHE
is caused by a strong spin-orbit interaction that maintains the
time-reversal symmetry. Kane and Mele2 proposed a Z2 clas-
sification for this kind of the topological state. For materials
with spatial inversion symmetry, the index could be easily
computed as the product of parities of the wave function at
several high-symmetry points in the Brillouin zone. The Z2
classification can be generalized to three-dimensional sys-
tems as well.3 Recently, topological insulators suitable for
room-temperature applications are also predicted.4 The QSH
state has the helical edge states, namely, having two counter-
propagating edge states for the two opposite spin polariza-
tions. The helical edge states are stable against time-reversal
conserving perturbations since backscattering processes need
to connect the upper and lower edges of the sample. The
probability of backscattering is exponentially suppressed as
the sample width is increased. Recent experiment5 provides
evidences of the QSHE in HgTe/CdTe quantum-well �QW�
structures, as predicted theoretically.6 The decoherence effect
in QSH samples is also investigated.7 Some interesting ques-
tions emerge such as the response of a QSH state to the
disorder and the interplay of the helical edge states and the
bulk states.

According to the celebrated scaling argument, in two di-
mensions the bulk electron wave functions are localized in
the presence of any weak disorder.8 But there are two known
exceptions, one is the two-dimensional systems with a strong
spin-orbital coupling and the other is the quantum Hall tran-
sition between different plateaus.9 With the discover of
QSHE state in two dimensions, study of the localization is in
demand. Sheng et al.10 investigated the disorder effect in
honeycomb lattice QSHE sample, they found the QSHE
phase is robust against weak disorder. Onoda and Obuse et
al.11,12 studied the critical properties of the transition from a

metal to a QSH state, and they found the results to be some-
what controversial.

Recently, Li et al.13 studied the transport properties of the
HgTe/CdTe QWs in the presence of disorder, they found as
the increasing of the disorder strength, the initially unquan-
tized conductance became quantized, i.e., the sample enters
into the QSH state because of the disorder so they named the
state as “topological Anderson insulator”�TAI�. The newly
anomalous quantized conductance plateau is caused by the
edge transport, which is indirectly revealed by the unchanged
plateau value along with width variation for two-terminal
calculation and quantized transmission coefficient for four-
terminal calculation. However, the detailed mechanism of the
edge transport is less clear.

In the present paper, we study the effect of disorder on the
electronic state of HgTe/CdTe QWs. We carry out Keldysh’s
nonequilibrium-Green’s-function �NEGF� calculations based
on a four-band tight-binding model. First, we perform the
conductance calculations for two different geometries. In the
case of a stripe geometry �see Fig. 1�a��, the presence of the
helical edge states are evident from the band spectrum, the
TAI phase described in Ref. 13 appears. While for the cylin-
drical geometry, i.e., periodical boundary condition along y
direction �see Fig. 1�b��, there is no edge state, the bulk state
is localized by disorder and there is no quantized conduc-
tance. These results strongly support the thesis that anoma-
lous conductance plateau is due to the edge transport and
gives a better understanding of the topological feature of the
TAI phase. Second, we obtain the distributions of the local
currents for the two-terminal strip samples with different
chemical potentials and disorder strengths. The evolvement
of the local-current-vector configurations gives rise to a di-
rect demonstration of the impurity influence in the HgTe/
CdTe QWs. By analyzing these local-current configurations,
the transport phenomena in both normal QSH region and TAI
region are clearly explained. Moreover, the detailed results,
such as the coexistence of the bulk and edge states at the dip
point �see Fig. 6� and the bulk-states-assisted backscattering
obtained from the local-current-vector configurations shed
further light on the mechanism of the disorder-induced edge
states for the TAI.
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The rest of this paper is organized as follows. In Sec. II,
we introduce the effective tight-binding model. The formulas
and calculation method are also described. In Sec. III, the
numerical results and their discussions are presented. Finally,
a conclusion is given in Sec. IV.

II. MODEL AND METHOD

As a starting point, we introduce the effective Hamil-
tonian for the HgTe/CdTe QWs with Anderson impurity in
the tight-binding representation. We consider a square lattice
with four special orbit states �s ,↑�, �px+ ipy ,↑�, �s ,↓�, and �
−�px− ipy� ,↓� on each site. Here ↑ ,↓ denotes the electron
spin. Through symmetry consideration, the effective Hamil-
tonian can be written as5,6,13,14

H = �
i

�i
†�

Eisa 0 0 0

0 Eipc 0 0

0 0 Eisb 0

0 0 0 Eipd

	�i

+ �
i

�i
†�

Vss Vsp 0 0

− Vsp
� Vpp 0 0

0 0 Vss Vsp
�

0 0 − Vsp Vpp

	�i+�x + H.c.

+ �
i

�i
†�

Vss iVsp 0 0

iVsp
� Vpp 0 0

0 0 Vss − iVsp
�

0 0 − iVsp Vpp

	�i+�y + H.c.

�1�

Here i= �ix , iy� is the site index, and �x and �y are unit

vectors along the x and y directions. �i= �ai ,ci ,bi ,di�T repre-
sents the four annihilation operators of electron on the site i
with the state indices �s ,↑�, �px+ ipy ,↑�, �s ,↓�, and
�−�px− ipy� ,↓�, respectively. The on-site matrix elements sat-
isfy Eisa=Es+Wisa, Eipc=Ep+Wipc, Eisb=Es+Wisb, and Eipd
=Ep+Wipd. Wisa=Wisb and Wipc=Wipd are on-site disorder
energies uniformly distributed in the range �− W

2 , W
2 � with the

disorder strength W. Es, Ep, Vss, Vpp, and Vsp are the five
independent parameters that characterize the clean HgTe/
CdTe samples. It is clear that near the � point the lattice
Hamiltonian �Eq. �1�� in k representation can be reduced to
the continuous Hamiltonian in Ref. 6 when we take Vsp
=−iA /2a, Vss= �B+D� /a2, Vpp= �D−B� /a2, Es=C+M −4
�B+D� /a2, and Ep=C−M −4�D−B� /a2. Here a is the lattice
constant and all the parameters A ,B ,C ,D ,M can be con-
trolled experimentally.5 Moreover, the Eq. �1� can be directly
obtained by discretizing spatial coordinates of the continuous
Hamiltonian using the substitution kx→−i �

�x and ky→−i �
�y .15

In this paper, we apply the model to two geometric de-
vices. The device a �see Fig. 1�a�� is of stripe geometry while
the device b �see Fig. 1�b�� is of cylindrical geometry which
can be obtained by rolling the device a into a tube. Without
disorder �W=0�, the energy spectrum of such two geometric
devices can be calculated by diagonalizing Eq. �1� using the
periodic boundary condition in x direction.16,17 Next we in-
vestigate how the disorder affects the transport properties of
such systems. For both devices a and b, the size of the central
region is L�W. To avoid redundant scattering from mis-
matched interfaces between the leads and central region, we
attach the clean HgTe/CdTe leads as the source and drain
leads. For convenience, we assume that the Anderson impu-
rities only exist in the �red� filled region and the temperature
is zero.

In our simulations, a small external bias V=VL−VR is ap-
plied between the two terminals. With the help of the NEGF
method, the local current flowing from site i can be ex-
pressed as18

Ji = e
Ṅi�

=
ie

� ��H,�
�

Ni�
�
= −

e

�
�

j
�
�,�

�Hi�,j�Gj�,i�
	 �t,t� − Hj�,i�Gi�,j�

	 �t,t�� , �2�

where Gj�,i�
	 �t , t��= i
�i�

† �t���j��t�� and Gi�,j�
	 �t , t��= i
�j�

† �t��
�i��t�� are the Keldysh Green’s functions. � ,� denote the
state indices. After taking the Fourier transform of such two
Green’s functions, the local current between neighboring
sites i and j can be calculated from the formula

Ji→j = −
e

�
�
�,�

�Hi�,j�Gj�,i�
	 �t,t� − Hj�,i�Gi�,j�

	 �t,t��

= −
2e

h
�
�,�
�

−





dE Re�Hi�,j�Gj�,i�
	 �E�� . �3�

Until now, we take neither approximation nor the symmetry
of the system, thus the Eq. �3� can work in any tight-binding

FIG. 1. �Color online� �a� and �b� are the schematic diagrams for
two devices. The Anderson impurities only exist in the �red� filled
regions. The source and drain leads are fabricate from the same
materials as in the center. �c� and �e� show the one-dimensional
energy bands for device a. The parameters are A=3.645 eV Å, B
=−68.6 eV Å2, C=0.0 meV, and D=−51.2 eV Å2, and gap pa-
rameter �c� M =−10 meV and �e� M =2 meV. �d� and �f� demon-
strate the one-dimensional energy bands for device b with the same
parameters as �c� and �e�, respectively.
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model. We note that such formula has been widely used in
the local-current studies.19,20 When the applied voltage is
small and the sample is in the zero temperature, by applying
the Keldysh equation G	=Gr�i�LfL+ i�RfR�Ga,18 the Eq. �3�
can be written as

Ji→j =
2e

h
�
�,�
�

−


eVR

dE Im�Hi�,j��Gr��L + �R�Ga�j�,i��

+
2e

h
�
�,�
�

eVR

eVL

dE Im�Hi�,j��Gr�LGa�j�,i��

=
2e

h
�
�,�
�

−


eVR

dE Im�Hi�,j��Gr��L + �R�Ga�j�,i��

+
2e2

h
�
�,�

Im�Hi�,j�Gj�,i�
n �EF���VL − VR� , �4�

where VL ,VR are the voltages at the Lead-L ,R. Gn�EF�
=Gr�EF��L�EF�Ga�EF� is electron correlation function. The
linewidth function is �L/R�E�= i��L/R

r �E�− ��L/R
r �E��+�.

The Green’s function Gr�E�= �Ga�E��+= �EI−Hcen−�L
r �E�

−�R
r �E��−1 with Hcen is the Hamiltonian in the central region.

�L
r ,�R

r are retarded self-energy due to the coupling to the
lead-L ,R that can be calculated numerically.21 The first part
of Eq. �4� gives rise to the equilibrium current Jeq �also
called persistent current� between neighboring sites i and j
while the rest parts give rise to the nonequilibrium current
between neighboring sites.22

Under time-reversal transformation, the charge and en-
ergy do not change sign while the velocity operator and spin
operator change its sign.23 The current-density operator, con-
tain velocity, changes its sign under the time reversal. For the
system contain the time-reversal symmetry, one obtain Jeq
=−Jeq so Jeq=0 Since the model described by Eq. �1� in the
manuscript maintain the time-reversal symmetry, the equilib-
rium current is zero. Thus the local current between neigh-
boring sites i and j can be calculated from the formula24

Ji→j =
2e2

h
Im��

�,�
Hi�,j�Gj�,i�

n �EF�
�VL − VR� . �5�

Note that for Eq. �1�, the spin-up �ai ,ci� subsystem and spin-
down �bi ,di� subsystem are decoupled. The local current be-
tween neighboring sites i and j with spin index � Ji→j

� can
also be calculated from Eq. �5� by summing over only the
state index with the corresponding unitary subsystem. The
current JL flowing through the device is calculated by sum-
ming over all the local current Ji→i+�x for an arbitrary col-
umn. After obtaining the current JL, the linear conductance
GLR is given by GLR=JL / �VL−VR�. In addition, the linear
conductance can be directly obtained by GLR
=Tr��LGr�RGa�. The agreement between the two methods
gives strong confirmation of our analytical derivations and
numerical calculations.

In the following numerical calculations, we choose the
realistic material parameters A ,B ,C ,D ,M that arrived from
the HgTe/CdTe QWs.5 The sample width �or circumference�
is fixed to Ly =80a with the lattice constant a=5 nm. Since
the model is only valid in small k, we confine the Fermi

energy within a small region near the � point. In the pres-
ence of disorder, the conductance G, conductance fluctuation
�G, the local current Ji→j

� , etc., are all averaged over up to
500 random configurations.

III. NUMERICAL RESULTS

Let us first compare the two devices in geometry and
topology. In device a with open boundary �Fig. 1�a��, there
are two edges in the y direction. Thus, the edge states can
exist in such device. Since the Fig. 1�b� is a cylinder without
edge, the edge states are prohibited in the device b. In Figs.
1�c� and 1�e�, the band structures of clean HgTe/CdTe QWs
of are plotted. There exist a bulk energy gap approximately
of 2�M� in both figures. Moreover, there are two degenerate
bands �edge states� cross inside the gap for gap parameter
M 	0 �Fig. 1�c��. In contrast, the crossing bands vanished
when M was tuned up to above zero �Fig. 1�d��. These re-
sults are in agreement with those of previous studies.6,16 In
Figs. 1�d� and 1�f�, we plot the corresponding band structures
in the cylindrical geometry. For both gap parameter �M�
0
and �M�	0, though the degeneracy is higher due to the en-
hanced symmetry, the bulk energy gap is nearly unchanged
and there is only tiny shift in the energy bands. However,
there is a big difference between the two samples, the edge
states which cross inside the gap vanish in the latter one. The
phenomenon originates from the topology of the device,
when the sample is sufficient large, the bulk states are hardly
affected by the topology change at the edge while the edge
states are totally destroyed. In conclusion, rolling the sample
from a strip to a cylinder destroys the edge channels but
maintains the bulk state properties.

Next, we investigate how the transport properties are af-
fected by disorder. Figures 2�a� and 2�c� show the conduc-
tance G and �G versus disorder strength for device a. When
the system is in the inverted regime �M 	0� with the Fermi
energy inside the bulk gap �EF=7 meV�, for a range of dis-
order strength W, the two-terminal conductance is quantized
without much fluctuations. Such observation agrees with the
previous result that the QSHE is robust against weak
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FIG. 2. �Color online� The conductance G �a� �b� and conduc-
tance fluctuation �G �c� �d� vs disorder strength W for different
Fermi energy EF and gap parameter M. �a� �c� for device a and �b�
�d� for device b. The central region length Lx=200a. Other param-
eters �A, B, C, D, and M� are the same as Figs. 1�c�–1�f�.
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disorder.2,10 However, when the chemical potential is tuned
up into the bulk band region near the � point, no matter M

0 or M 	0, the intriguing phenomena emerge. The con-
ductance G decreases while the fluctuation �G increases
when the disorder is first applied. When the disorder strength
continues to increase, instead of localization, the conduc-
tance begins to increase to a quantized value �2e2 /h� and
maintains at this value for a certain range before eventually
decreases. Meanwhile, the conductance fluctuation �G de-
creases to zero and vanishes for the corresponding W. The
anomalous conductance plateau indicates that the sample be-
comes a topological insulator. More importantly, different
from the traditional topological insulator �QHE, etc.�, the
quantized value is induced by the impurities.25,26 This
disorder-induced anomalous conductance plateau was dis-
covered in a very recent work.13 Naturally, there exists a
question: what is the mechanism that causes such an anoma-
lous plateau?

To answer this question, we first examine G and �G as a
function of disorder strength for device b using the same
parameters as device a �see Figs. 2�b� and 2�d��. Unlike the
device a, the transport properties follow the traditional
Anderson metal-insulator transition feature9 and the anoma-
lous conductance plateau is absent. For instance, the conduc-
tance monotonously decreases to zero with increase in the
disorder strength and the critic disorder strength Wc increases
with raising of the Fermi energy. Significantly, the metal-
insulator transition point for device b is roughly at the start-
ing point of the anomalous plateau for device a. Take M
=−10 meV and EF=18 meV, for example, �see black solid
line in Figs. 2�a� and 2�b��, the anomalous plateau sets up at
the disorder strength Wc�93 meV for device a and for that
threshold value the device b becomes an insulator
�G�0,�G�0�. As shown in Fig. 1, the bulk states in the
device a and the device b are the same. Only the edge states
are completely destroyed by rolling the device a into the
device b. This gives a direct evidence that the anomalous
conductance plateau originates from the edge states.

To get a better insight into the microscopic origin of the
conductance variations, we examine the disorder effect
through the local-current-vector-flow configurations. Due to
the time-reversal symmetry, we only consider the spin-up
subsystem, the influence of spin-down subsystem can be di-
rectly obtained by time-reversal symmetry. Here, the local-
current-flow vector on site i is defined as Ji

↑=Ji→i+�x
↑

+Ji→i+�y
↑ .
In Fig. 3, the typical distributions of local currents for

device a in traditional QSHE region are plotted. For a clean
sample �see Fig. 3�a��, the local currents locate mainly on the
upper edge and their values decay exponentially toward the
bulk. Surprisingly, the small disorder initially makes the edge
channel narrower �see Fig. 3�b��. Though the mechanism is
unclear, we note such phenomenon was already observed
recently by Chu et al.27 In their paper, this narrowing effect
was indirectly observed by the decreasing of the oscillation
period of the A-B ring while in this paper such effect is
directly shown by the spatial distributions of the local cur-
rents. When the Anderson disorder strength is getting larger,
the local currents spread to the bulk and broaden the edge
channels again �see Fig. 3�c��. However, only when the dis-

order strength exceeds the critical value Wc, the spread local-
current flow can reach the lower edge channels with different
chirality, the effective backscattering �as shown in the local-
current-flow vector located near the lower edge in the region
0	X	40a in Fig. 3�c�� can take place, leading to the reduc-
tion in the conductance between the two terminals. These
pictures explain why the traditional quantized plateau is ro-
bust under weak disorder and how it is destroyed in the
strong disorder limit.

Next, the Fermi energy is tuned to EF=18 meV, sitting
slightly above the bulk gap. A positive gap parameter M
=2 meV, for which there is no helical edge states inside the
bulk gap for the clean sample, is chosen in the following
simulations. The conductance G vs disorder strength W
shown in Fig. 2�a� can be classified to four regions �i� with-
out disorder, �ii� before the anomalous plateau, �iii� on the
anomalous plateau, and �iv� after the anomalous plateau. The
typical configurations of local-current-flow vector in such
four regions are plotted in Fig. 4. For the clean sample �see
Fig. 4�a��, the local current not only flow forward along the
upper edge but also uniformly flow forward in the bulk.
While W is increased from zero into the region �ii�, the local
currents in the bulk of the disorder region become smaller
and more irregular in directions �see Fig. 4�b��, which di-
rectly shows the decline of the bulk transport and the local-
ization of the bulk states. Figure 4�c� demonstrates the dis-
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FIG. 3. �Color online� Configurations of the local-current-flow
vector for device a with Fermi energy EF=7 meV, M =−10 meV,
central region size Lx=200a, Ly =80a under disorder strength �a�
W=0, �b� W=50 meV, �c� W=110 meV, and �d�W=220 meV.
The inset of Fig. 3�a� is the schematic of local-current-flow vector.
The vector direction represent the local-current-flow direction and
the vector length is proportional to the logarithm of local-current
value. The order of magnitude for the local currents are displayed in
the color bar.
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tribution of the local currents when the device is in the
region �iii�. The most interesting phenomena exist in the dis-
order region X� �40a ,160a�. The local currents in the bulk
decline to zero while the residual currents flow in the upper
edge and flow without much scattering. In addition, through-
out the region �iii�, the bulk transport vanishes due to the
localization of all the bulk states. In contrast, the edge trans-
port shows the same behavior as in the traditional QSHE
region; the local currents deeply spread into the bulk without
any effective backscattering with W increasing until it con-
nected the opposite edge channels �see Fig. 4�d��. Obviously,
such edge transport will lead to the quantized plateau. In the
negative gap parameter situation, for example, M
=−10 meV and EF=18 meV,�see Fig. 5� the evolvement of
local-current configurations resembles that of M 
0 situa-
tion. So far, the Figs. 4�c� and 5�c� are the most strong evi-
dence directly showing that the TAI is caused by the edge
transport. In addition, these plots provide a vivid micro-
scopic picture demonstrating the influence of disorder on
TAI.

Up to now, we have explained the majority phenomena
emerged in the TAI. Nevertheless, the transport properties in
the region �ii� of G-W figure demands a detailed study for the
following two reasons. �i� The conductance is not monoto-
nously decreasing with increasing disorder strength but
shows a dip feature prior to the anomalous plateau. Obvi-
ously, at the dip point, the system is neither in TAI phase nor
in normal Anderson insulator phase due to its nonzero and
nonquantized conductance value. �ii� For both types of gap

parameter M 
0 and M 	0, the dip does exist prior to the
anomalous plateau and the conductance G behaves similarly
after the dip. Thus, revealing the cause for the dip feature
may help us to understand the mechanism of the formation
of the edge states.

In Fig. 6�a�, the distribution of the local currents with the
disorder strength W being fixed at the dip is plotted. The
local-currents flow are larger close to the edges than in the
bulk. The predominant edge transport is clearly seen. In Fig.
6�b� we plot the position-related current Jp versus longitude
axis x. Where Jp is defined as the summation of ji→i+�x

↑ for
four layers in the corresponding region. For example, given
sample width Ly =80a, Jp for the upper edge is defined as
�iy=77

iy=80ji→i+�x
↑ . With the help of Jp, one can quantitatively ana-

lyze the local currents. On the whole, the behavior of the
position-related current Jp is similar to the local-current con-
figurations but it is smoother with the position x. More sig-
nificantly, one can observe from Fig. 6�b�, the local currents
flow from left to right with rapidly decreasing magnitude for
upper edge and vice versa for the lower edge. This phenom-
enon can be attributed to the bulk-state-assisted backscatter-
ing between two edges. The fact that the position-related
current Jp in the bulk is small but nonzero indicates that the
bulk states are not fully localized at the dip. The scattered
carriers in the upper edge can hop through such delocalized
bulk states to the lower edge which leads to the backscatter-
ing processes. In other words, disorder not only destroys the
bulk transport but also quickly destroys the edge transport.
Because of this, the conductance G is lower than plateau
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FIG. 4. �Color online� Configurations of the local-current-flow
vector for device a with the same sample sizes as for Fig. 3, positive
gap parameter M =2 meV, Fermi energy EF=18 meV, and disor-
der strength �a� W=0, �b� W=100 meV, �c� W=150 meV, and W
=250 meV.
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FIG. 5. �Color online� Configurations of the local-current-flow
vector for device a with the same sample sizes as for Fig. 3, nega-
tive gap parameter M =−10 meV, Fermi energy EF=18 meV, and
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value at the dip point. For the region after dip �see Fig. 2�a��,
increasing of W slowly destroys the bulk transport but it also
suppresses the bulk-assisted backscattering mechanism at the
same time. It leads to an overall increase in the conductance
G. When the bulk states become fully localized, the anoma-

lous plateau shows up. In Fig. 6�c�, the conductance G versus
W with different sample lengths Lx are plotted. The dip fea-
ture is clearer for a large Lx because of the increasing prob-
ability of the backscattering between the two edges. How-
ever, for all Lx, the anomalous plateaus appear with the same
disorder strength due to the fully localized bulk states.

IV. CONCLUSIONS

In summary, the disorder effect in HgTe/CdTe quantum
wells is studied. We confirm the existence of the TAI phase.
Conductances calculated for the stripe and cylinder samples
reveal the topological feature of TAI and support the idea
that helical edge states cause the anomalous quantized pla-
teau. With the help of local-current-vector configurations for
different chemical potentials and disorder strengths, the basic
physical phenomena emerged in the normal QSHE region
and in the TAI region are clearly understood. In particular,
the analysis of the local-current configurations provides us
with the importance of the bulk-states-assisted backscatter-
ing in TAI that in turn help us to understand the mechanism
of the formation of the disorder-induced edge states.
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